BitMagic-C++
bvsetalgebra.cpp

Example demonstrates variety of algebra of sets operations. http://bitmagic.io/set-algebra.html

Algebra Of Sets

See also
bvector<> container
bvector<>::bit_or
bvector<>::bit_and
bvector<>::bit_xor
bvector<>::bit_sub
bm::aggregator
bm::operation_deserializer
bm::combine_and
bm::combine_and_sorted
bm::combine_sub
bm::combine_or
bm::combine_xor
sample7.cpp
/*
Copyright(c) 2002-2017 Anatoliy Kuznetsov(anatoliy_kuznetsov at yahoo.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For more information please visit: http://bitmagic.io
*/
/** \example bvsetalgebra.cpp
Example demonstrates variety of algebra of sets operations.
http://bitmagic.io/set-algebra.html
<a href="http://bitmagic.io/set-algebra.html">Algebra Of Sets</a>
\sa bvector
\sa bvector<>::bit_or
\sa bvector<>::bit_and
\sa bvector<>::bit_xor
\sa bvector<>::bit_sub
\sa bm::aggregator
\sa bm::operation_deserializer
\sa bm::combine_and
\sa bm::combine_and_sorted
\sa bm::combine_sub
\sa bm::combine_or
\sa bm::combine_xor
\sa sample7.cpp
*/
/*! \file bvsetalgebra.cpp
\brief Example: algebra of sets operations
*/
#include <iostream>
#include <vector>
#include "bm.h"
#include "bmalgo.h"
#include "bmserial.h"
#include "bmaggregator.h"
using namespace std;
// utility function to print a set
static
{
bm::id_t cnt = 0;
for (; en.valid() && cnt < 10; ++en, ++cnt)
cout << *en << ", ";
if (cnt == 10)
cout << " ...";
cout << "(size = "<< bv.size() << ")" << endl;
}
// utility function to create serialized bit-vector BLOB
static
void make_BLOB(vector<unsigned char>& target_buf, bm::bvector<>& bv)
{
bv.optimize(tb, bm::bvector<>::opt_compress); // memory compression
bvs.serialize(bv, sbuf, 0);
target_buf.resize(sbuf.size());
::memcpy(target_buf.data(), sbuf.buf(), sbuf.size());
}
// -------------------------------------------------------------
// Demo for Set Union (OR) operations
//
static
void DemoOR()
{
// bit-vector set union operation: bv_A |= bv_B
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
bv_A.bit_or(bv_B);
print_bvector(bv_A); // 1, 2, 3, 4
}
// same, but sizes are set, observe size gets extended up
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
bv_A.resize(5);
bv_B.resize(10);
bv_A.bit_or(bv_B);
print_bvector(bv_A); // 1, 2, 3, 4 (size = 10)
}
// 3-operand OR: bv_T = bv_A | bv_B
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
print_bvector(bv_T); // 1, 2, 3, 4 (size = 10)
}
// merge operation is a logical equivalent of OR
// except it can destroy the source vector to borrow memory blocks from it
// (this is faster, especially in multi-threaded cases)
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
bv_A.merge(bv_B);
print_bvector(bv_A); // 1, 2, 3, 4 (size = 10)
}
// bit-vector set union operation (opcode interpeter mode)
// maybe useful for building query interpetors
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
print_bvector(bv_A); // 1, 2, 3, 4
}
// Set union between bit-vector and STL container
{
bm::bvector<> bv_A { 1, 2, 3 };
vector<unsigned> vect_B { 1, 2, 4 };
bm::combine_or(bv_A, vect_B.begin(), vect_B.end());
print_bvector(bv_A); // 1, 2, 3, 4
}
// Set union between bit-vector and C-array.
// This tends to be faster then "combine_or()" especially on sorted vectors
// and in SIMD enabled configurations
{
bm::bvector<> bv_A { 1, 2, 3 };
vector<unsigned> vect_B { 1, 2, 4 };
const unsigned* arr = &vect_B[0];
bv_A.set(arr, unsigned(vect_B.size()), bm::BM_SORTED); // sorted - fastest
print_bvector(bv_A); // 1, 2, 3, 4
}
// Set union between bit-vector and a serialized bit-vector BLOB
// (created on the fly)
{
bm::bvector<> bv_A { 1, 2, 3 };
vector<unsigned char> blob;
{
bm::bvector<> bv_B { 1, 2, 4 };
make_BLOB(blob, bv_B);
}
blob.data(),
tb,
print_bvector(bv_A); // 1, 2, 3, 4
}
// Union of many sets with bm::aggegator<>
// target := A OR B OR C
//
// This method is best when we have multiple vectors at hands, aggregator
// is capable of doing it faster, than pair by pair OR
{
bm::bvector<> bv_T; // target vector
bm::bvector<> bv_A { 1, 2 };
bm::bvector<> bv_B { 2, 3 };
bm::bvector<> bv_C { 3, 4 };
agg.set_optimization(); // perform on-the-fly optimization of result
// attach vectors to group 0 for OR operation
agg.add(&bv_A);
agg.add(&bv_B);
agg.add(&bv_C);
agg.combine_or(bv_T);
agg.reset(); // reset the aggregator parameters
print_bvector(bv_T); // 1, 2, 3, 4
}
}
// -------------------------------------------------------------
// Demo for Set Intersect (AND) operations
//
static
void DemoAND()
{
// bit-vector set intersect operation: bv_A &= bv_B
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
bv_A.bit_and(bv_B);
print_bvector(bv_A); // 1, 2
}
// same, but sizes are set, observe size gets extended up
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
bv_A.resize(5);
bv_B.resize(10);
bv_A.bit_and(bv_B);
print_bvector(bv_A); // 1, 2 (size = 10)
}
// 3-operand AND: bv_T = bv_A & bv_B
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
print_bvector(bv_T); // 1, 2
}
// bit-vector set union operation (opcode interpeter mode)
// maybe useful for building query interpetors
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
print_bvector(bv_A); // 1, 2
}
// Set Intersect between bit-vector and STL container
{
bm::bvector<> bv_A { 1, 2, 3 };
vector<unsigned> vect_B { 1, 2, 4 };
bm::combine_and(bv_A, vect_B.begin(), vect_B.end());
print_bvector(bv_A); // 1, 2
}
// Set Intersect between bit-vector and C-array.
// This may be faster then "combine_and()" especially on sorted vectors
{
bm::bvector<> bv_A { 1, 2, 3 };
vector<unsigned> vect_B { 1, 2, 4 };
const unsigned* arr = &vect_B[0];
bv_A.keep(arr, unsigned(vect_B.size()), bm::BM_SORTED); // sorted - fastest
print_bvector(bv_A); // 1, 2
}
// Set Intersect between bit-vector and a serialized bit-vector BLOB
//
{
bm::bvector<> bv_A { 1, 2, 3 };
vector<unsigned char> blob;
{
bm::bvector<> bv_B { 1, 2, 4 };
make_BLOB(blob, bv_B);
}
blob.data(),
tb,
print_bvector(bv_A); // 1, 2
}
// Intersection of many sets with bm::aggegator<> (find common subset)
// target := A AND B AND C
//
// This method is best when we have multiple vectors at hands, aggregator
// is capable of doing it faster, than pair by pair AND
{
bm::bvector<> bv_T; // target vector
bm::bvector<> bv_A { 1, 2 };
bm::bvector<> bv_B { 1, 2, 3 };
bm::bvector<> bv_C { 1, 2, 3, 4 };
agg.set_optimization(); // perform on-the-fly optimization of result
// attach vectors to group 0 for OR operation
agg.add(&bv_A);
agg.add(&bv_B);
agg.add(&bv_C);
agg.combine_and(bv_T);
agg.reset(); // reset the aggregator parameters
print_bvector(bv_T); // 1, 2
}
}
// -------------------------------------------------------------
// Demo for XOR operations
//
static
void DemoXOR()
{
// bit-vector xor operation: bv_A ^= bv_B
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
bv_A.bit_xor(bv_B);
print_bvector(bv_A); // 3, 4
}
// same, but sizes are set, observe size gets extended up
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
bv_A.resize(5);
bv_B.resize(10);
bv_A.bit_xor(bv_B);
print_bvector(bv_A); // 3, 4 (size = 10)
}
// 3-operand XOR: bv_T = bv_A ^ bv_B
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
print_bvector(bv_T); // 3, 4
}
// bit-vector xor operation (opcode interpeter mode)
// maybe useful for building query interpetors
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
print_bvector(bv_A); // 3, 4
}
// xor between bit-vector and STL container
{
bm::bvector<> bv_A { 1, 2, 3 };
vector<unsigned> vect_B { 1, 2, 4 };
bm::combine_xor(bv_A, vect_B.begin(), vect_B.end());
print_bvector(bv_A); // 3, 4
}
// xor between bit-vector and a serialized bit-vector BLOB
//
{
bm::bvector<> bv_A { 1, 2, 3 };
vector<unsigned char> blob;
{
bm::bvector<> bv_B { 1, 2, 4 };
make_BLOB(blob, bv_B);
}
blob.data(),
tb,
print_bvector(bv_A); // 3, 4
}
}
// -------------------------------------------------------------
// Demo for Set Substract (AND NOT) operations
//
static
void DemoSUB()
{
// bit-vector set union operation: bv_A -= bv_B
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
bv_A.bit_sub(bv_B);
print_bvector(bv_A); // 3
}
// same, but sizes are set, observe size gets extended up
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
bv_A.resize(5);
bv_B.resize(10);
bv_A.bit_sub(bv_B);
print_bvector(bv_A); // 3 (size = 10)
}
// 3-operand SUB: bv_T = bv_A - bv_B
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
print_bvector(bv_T); // 3
}
// bit-vector minus operation (opcode interpeter mode)
// maybe useful for building query interpetors
{
bm::bvector<> bv_A { 1, 2, 3 };
bm::bvector<> bv_B { 1, 2, 4 };
print_bvector(bv_A); // 3
}
// and not between bit-vector and STL container
{
bm::bvector<> bv_A { 1, 2, 3 };
vector<unsigned> vect_B { 1, 2, 4 };
bm::combine_sub(bv_A, vect_B.begin(), vect_B.end());
print_bvector(bv_A); // 3
}
// Set Intersect between bit-vector and C-array.
// This may be faster then "combine_and()" especially on sorted vectors
{
bm::bvector<> bv_A { 1, 2, 3 };
vector<unsigned> vect_B { 1, 2, 4 };
const unsigned* arr = &vect_B[0];
bv_A.clear(arr, unsigned(vect_B.size()), bm::BM_SORTED); // sorted - fastest
print_bvector(bv_A); // 3
}
// Set union between bit-vector and a serialized bit-vector BLOB
//
{
bm::bvector<> bv_A { 1, 2, 3 };
vector<unsigned char> blob;
{
bm::bvector<> bv_B { 1, 2, 4 };
make_BLOB(blob, bv_B);
}
blob.data(),
tb,
print_bvector(bv_A); // 3
}
// Subtraction of many sets with bm::aggegator<>
// target := (target SUB A) OR (target SUB B) OR (target SUB C)
//
{
bm::bvector<> bv_T; // target vector
bm::bvector<> bv_A { 1, 2, 3, 4 };
bm::bvector<> bv_B { 1, 2 };
bm::bvector<> bv_C { 1, 2, 4 };
agg.set_optimization(); // perform on-the-fly optimization of result
// here we are really using AND SUB operation
// where group 0 is all ANDed and group 1 SUBtracted from the result
// group 1 is only 1 vector, so AND part will be no-op
//
agg.add(&bv_A, 0); // add to group 0 (subtraction source)
agg.add(&bv_B, 1); // add to group 1 (subtraction arguments)
agg.add(&bv_C, 1);
agg.combine_and_sub(bv_T);
agg.reset(); // reset the aggregator parameters
print_bvector(bv_T); // 3
}
}
// -------------------------------------------------------------
// Demo for Set Invert (NOT)
//
static
void DemoINV()
{
// bit-vector invert operation
// by default it inverts the whole 32-bit space
{
bm::bvector<> bv_A { 4, 5, 6 };
bv_A.invert();
print_bvector(bv_A); // 0, 1, 2, 3, 7 ...
}
// bit-vector invert operation
// it is size bound, inverts within set limits
{
bm::bvector<> bv_A { 4, 5, 6 };
bv_A.resize(7);
bv_A.invert();
print_bvector(bv_A); // 0, 1, 2, 3, size = 7
}
}
// -------------------------------------------------------------
// Demo for AND-SUB
// AND-SUB implements a search pattern "all this but not that"
//
static
{
// Operation on two groups of vectors using aggregator
// 1. Group 0 - find common subset (Set Intersect / AND)
// 2. Group 1 - find union (OR) of the group and SUBtract it from #1
//
// target := (A AND D AND ...) AND NOT (B OR C OR ...)
//
{
bm::bvector<> bv_T; // target vector
bm::bvector<> bv_A { 1, 2, 3, 4 };
bm::bvector<> bv_B { 1, 2 };
bm::bvector<> bv_C { 1, 2, 4 };
bm::bvector<> bv_D { 0, 2, 3, 4, 5 };
agg.set_optimization(); // perform on-the-fly optimization of result
// here we are really using AND SUB operation
// where group 0 is all ANDed and group 1 SUBtracted from the result
//
agg.add(&bv_A, 0); // add to group 0 for AND
agg.add(&bv_D, 0); //
agg.add(&bv_B, 1); // add to group 1 SUB tract from group 0 result
agg.add(&bv_C, 1);
agg.combine_and_sub(bv_T);
agg.reset(); // reset the aggregator parameters
print_bvector(bv_T); // 3
}
}
int main(void)
{
try
{
cout << endl << "Set Union (OR) demo" << endl << endl;
DemoOR();
cout << endl << "Set Intersect (AND) demo" << endl << endl;
cout << endl << "XOR demo" << endl << endl;
cout << endl << "Set Minus (SUB/AND-NOT) demo" << endl << endl;
cout << endl << "Set Invert (NOT) demo" << endl << endl;
cout << endl << "Set AND-SUB demo" << endl << endl;
}
catch(std::exception& ex)
{
std::cerr << ex.what() << std::endl;
}
return 0;
}