BitMagicC++Library
sample4.cpp

Exmaple demonstrates bitvector serialization/deserialization.For more information please visit: http://bmagic.sourceforge.net

See also
bm::serializer
bm::deserialize
/*
Copyright(c) 2002-2017 Anatoliy Kuznetsov(anatoliy_kuznetsov at yahoo.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For more information please visit: http://bitmagic.io
*/
/** \example sample4.cpp
Exmaple demonstrates bitvector serialization/deserialization.
For more information please visit: http://bmagic.sourceforge.net
\sa bm::serializer
\sa bm::deserialize
*/
#include <stdlib.h>
#include <iostream>
#include "bm.h"
#include "bmserial.h"
using namespace std;
// This exmaple demonstrates bitvector serialization/deserialization.
const unsigned MAX_VALUE = 1000000;
// This procedure creates very dense bitvector.
// The resulting set will consists mostly from ON (1) bits
// interrupted with small gaps of 0 bits.
{
for (unsigned i = 0; i < MAX_VALUE; ++i)
{
if (rand() % 2500)
{
bv->set_bit(i);
}
}
}
{
bv.calc_stat(&st);
cout << "Bits count:" << bv.count() << endl;
cout << "Bit blocks:" << st.bit_blocks << endl;
cout << "GAP blocks:" << st.gap_blocks << endl;
cout << "Memory used:"<< st.memory_used << endl;
cout << "Max.serialize mem.:" << st.max_serialize_mem << endl << endl;;
}
{
// It is reccomended to optimize vector before serialization.
cout << "Bits count:" << bv.count() << endl;
cout << "Bit blocks:" << st.bit_blocks << endl;
cout << "GAP blocks:" << st.gap_blocks << endl;
cout << "Memory used:"<< st.memory_used << endl;
cout << "Max.serialize mem.:" << st.max_serialize_mem << endl;
// Allocate serialization buffer.
unsigned char* buf = new unsigned char[st.max_serialize_mem];
// Serialization to memory.
unsigned len = bvs.serialize(bv, buf, st.max_serialize_mem);
cout << "Serialized size:" << len << endl << endl;
return buf;
}
int main(void)
{
unsigned char* buf1 = 0;
unsigned char* buf2 = 0;
try
{
bv2.set_new_blocks_strat(bm::BM_GAP); // set DGAP compression mode ON
fill_bvector(&bv1);
fill_bvector(&bv2);
// Prepare a serializer class
// for best performance it is best to create serilizer once and reuse it
// (saves a lot of memory allocations)
//
// next settings provide lowest size
buf1 = serialize_bvector(bvs, bv1);
buf2 = serialize_bvector(bvs, bv2);
// Serialized bvectors (buf1 and buf2) now ready to be
// saved to a database, file or send over a network.
// ...
// Deserialization.
// As a result of desrialization bv3 will contain all bits from
// bv1 and bv3:
// bv3 = bv1 OR bv2
bm::deserialize(bv3, buf1);
bm::deserialize(bv3, buf2);
// After a complex operation we can try to optimize bv3.
bv3.optimize();
}
catch(std::exception& ex)
{
std::cerr << ex.what() << std::endl;
delete [] buf1;
delete [] buf2;
return 1;
}
delete [] buf1;
delete [] buf2;
return 0;
}